微分与导数区别(微分与导数区别在哪)
微分与导数区别在哪
导数是函数图像在某一点处的斜率,也就是纵坐标增量(Δy)和横坐标增量(Δx)在Δx-->0时的比值。微分是指函数图像在某一点处的切线在横坐标取得增量Δx以后,纵坐标取得的增量,一般表示为dy。 导数是函数图像在某一点处的斜率,也就是纵坐标变化率和横坐标变化率的比值。微分是指函数图像在某一点处的切线在横坐标取得Δx以后,纵坐标取得的增量。
微分与导数区别在哪里
1 微分和导数是不同的概念。2 微分是一种数学工具,可以用来研究函数的变化率和曲线的切线,它是一个函数在某个点处的增量与自变量增量之比的极限,表示函数在这个点处的变化率。3 导数是微分的一种特殊情况,它是函数在某个点处的变化率,用极限定义为函数在这个点处的导数。4 微分和导数在应用中常常是相互转化的,例如可以通过微分求导数,也可以通过求导数来求微分。
微分与导数的关系式
原函数的导数等于反函数导数的倒数。 设y=f(x),其反函数为x=g(y), 可以得到微分关系式:dy=(df/dx)dx ,dx=(dg/dy)dy . 那么,由导数和微分的关系我们得到, 原函数的导数是 df/dx = dy/dx, 反函数的导数是 dg/dy = dx/dy . 所以,可以得到 df/dx = 1/(dg/dx) .
微分跟导数有什么区别
微分和导数之间并不相等
他们之间的关系是变量与比值的关系
如果两个变量x和y的微分dx和dy成比例关系:dx=kdy
那么我们就把这个比例数k叫做x对y的导数
.
那么微分又是什么呢?
微分dx是对变量x的一种运算
具体地说就是变量由x变到x'的差值:Δx=x'-x
当这个差值足够小,达到某种稳定状态(见后述)时
就是我们所想要的微分,并把这个差值Δx记作:dx
.
可见,如果x是常量,Δx就固定是0了
所以常量的微分都是0,通常就说变量才有微分
这也是微分运算与加减乘除运算的本质不同
四则运算是对数值的运算
微分运算是对变量的运算
.
那么微分dx有什么意义呢
如果只有一个微分dx
确实是毫无意义的
因为现实世界里的事物都是多元的、互相制约的
他们互相作用构成一个系统才有意义
.
所以单独一个变量的微分是没有意义的
要互相比较才有意义
这就是为什么微分总是要计算导数了
或者说有了导数微分才有意义
只有算出导数来了,才搞清楚两个微分的关系
导数y'把两个微分dx和dy联系起来了:dy=y'dx
而且这是一个最简单的线性比例关系
.
最后来说微分为什么要趋于0
首先要搞清楚微分运算的目的是什么
其实上面已经提到了
就是要弄清楚两个变量x和y之间的关系
通常这两个变量不是随机乱变
(应对随机乱变的事就是概率论了)
所以就可以通过计算变量的差值Δx和Δy
来观察这个差值究竟有多大,是否很离谱
更重要的是这两个差值是否协调稳定
如果是比较稳定的,Δy:Δx就只在某个范围内变动
进一步就想知道他究竟有没有一个准确的比例数
要想得到这个精确的结论,就要不断地减少误差
让Δx和Δy尽可能地小,当确认了这个精确值时
微分就达到目的了,用dx和dy取代Δx和Δy称之为微分
把这个精确比例:dy/dx称为y对x导数,记作y'
终于找到他们的准确倍数关系了:dy=y'dx
微分与导数有何区别
1.两者定义不同,微分法则:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。 求导法则:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。
2.表示方式不同,微分法则:微分又可记作dy = f'(x)dx,例如:d(sinX)=cosXdX。 求导法则:函数的导数是f'(x)。
3.几何意义不同,微分法则:设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲 线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。 求导法则:当自变量
本网站文章仅供交流学习 ,不作为商用, 版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除.