当前位置:首页 > 西部百科 > 正文内容

红外和拉曼区别(红外与拉曼活性判断规律)

2023-04-01 06:48:05西部百科1

红外与拉曼活性判断规律

当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变方向发生散射,而光的频率仍与激发光的频率相同,这种散射称为瑞利散射;约占总散射光强度的10-6~10-10的散射,不仅改变了光的传播方向,而且散射光的频率也改变了,不同于激发光的频率,称为拉曼散射。拉曼散射中频率减少的称为斯托克斯散射,频率增加的散射称为反斯托克斯散射,斯托克斯散射通常要比反斯托克斯散射强得多,拉曼光谱仪通常测定的大多是斯托克斯散射,也统称为拉曼散射。散射光与入射光之间的频率差v称为拉曼位移,拉曼位移与入射光频率无关,它只与散射分子本身的结构有关。拉曼散射是由于分子极化率的改变而产生的。拉曼位移取决于分子振动能及的变化,不同化学键或基团有特征的分子振动,ΔE反映了指定能级的变化,因此与之对应的拉曼位移也是特征的。这是拉曼光谱可以作为分子结构定性分析的依据。

判断红外活性和拉曼活性

一般来说,简谐振动的活性中,一种对应红外活性,一种对应拉曼活性,红外活性的简振模式偶极矩发生变化,拉曼活性电子云极化率发生变化。

简述红外及拉曼光谱产生原理及其分析应用与特点

拉曼(raman)光谱作为现代物质分子结构研究的重要方法之一,被广泛应用于物质微结构的研究,其主要是通过拉曼位移(拉曼振动频率)δv来确定物质的结构。

它提供的结构信息是关于分子内部各种简正振动频率及有关振动能级的情况,从而可以用来鉴定分子中存在的官能团,进而进行分子结构的识别。

拉曼位移就是分子振动或转动频率,它与入射线频率无关,而与分子结构有关,这就是拉曼效应的基本内涵,也就是通过对物质(包括岩石矿物等)的拉曼光谱的测定能够鉴定和研究物质分子基团结构的基本原理。

每一种物质有自己的特征拉曼光谱,拉曼谱线的数目、位移值的大小和谱带的强度等都与物质分子振动和转动能级有关。

又来分析矿物时要先注意其特征峰的变化,来分析内部结构的变化。例子嘛,具体问题具体分析喽!

红外与拉曼活性判断规律的区别

拉曼光谱与红外光谱的区别:

1.区别:红外光谱又叫做红外吸收光谱,它是红外光子与分子振动、转动的量子化能级共振产生吸收而产生的特征吸收光谱曲线。要产生这一种效应,需要分子内部有一定的极性,也就是说存在分子内的电偶极矩。在光子与分子相互作用时,通过电偶极矩跃迁发生了相互作用。拉曼光谱是一种阶数更高的光子——分子相互作用,要比红外吸收光谱的强度弱很多。但是由于它产生的机理是电四极矩或者磁偶极矩跃迁,并不需要分子本身带有极性,因此特别适合那些没有极性的对称分子的检测。

2.联系:拉曼光谱和红外光谱都发生在红外区。

红外光谱和拉曼光谱的原理

拉曼光谱通常采用激光作为单色光源,将样品分子激发到某一虚态,随后受激分子弛豫跃迁到一个与基态不同的振动能级,此时,散射辐射的频率将与入射频率不同。这种频率变化与基态和终态的振动能级差相当。这种“非弹性散射”光就称之为拉曼散射

红外活性和拉曼活性的选择定律

拉曼效应

1930年诺贝尔物理学奖——拉曼效应

1930年诺贝尔物理学奖授予印度加尔各答大学的拉曼(SirChandrasekhara Venkata Raman,1888——1970),以表彰他研究了光的散射和发现了以他的名字命名的定律,为现在拉曼光谱仪等先进仪器的生产奠定了基础。

在光的散射现象中有一特殊效应,和X射线散射的康普顿效应类似,光的频率在散射后会发生变化。频率的变化决定于散射物质的特性。这就是拉曼效应,是拉曼在研究光的散射过程中于1928年发现的。在拉曼和他的合作者宣布发现这一效应之后几个月,苏联的兰兹伯格(G.Landsberg)和曼德尔斯坦(L.Mandelstam)也独立地发现了这一效应,他们称之为联合散射。拉曼光谱是入射光子和分子相碰撞时,分子的振动能量或转动能量和光子能量叠加的结果,利用拉曼光谱可以把处于红外区的分子能谱转移到可见光区来观测。因此拉曼光谱仪充分利用这一原理实现功能。

拉曼和他的学生们想了许多办法研究光散射这一现象。他们试图把散射光拍成照片,以便比较,可惜没有成功。他们用互补的滤光片,用大望远镜的目镜配短焦距透镜将太阳聚焦,试验样品由液体扩展到固体,坚持进行各种试验。

与此同时,拉曼也在追寻理论上的解释。他参照康普顿效应中的命名“变线”,把这种新辐射称为:“变散射”(modified scattering)。拉曼又进一步改进了滤光的方法, 在蓝紫滤光片前再加一道铀玻璃,使入射的太阳光只能通过更窄的波段,再用目测分光镜观察散射光,竟发现展现的光谱在变散射和不变的入射光之间,隔有一道暗区,为拉曼光谱仪等仪器的发明创造了实际和理论条件。

就在1928年2月28日下午,拉曼决定采用单色光作光源,做了一个非常漂亮的有判决意义的实验。他从目测分光镜看散射光,看到在蓝光和绿光的区域里,有两根以上的尖锐亮线。每一条入射谱线都有相应的变散射线。一般情况,变散射线的频率比入射线低,偶而也观察到比入射线频率高的散射线,但强度更弱些。

不久,人们开始把这一种新发现的现象称为拉曼效应。1930年,美国光谱学家武德(R.W.Wood)对频率变低的变散射线取名为斯托克斯线;频率变高的为反斯托克斯线。由此,拉曼效应正式形成,并应用于科研方面,相继生产出了拉曼光谱仪等一系列拉曼光谱产品。

本网站文章仅供交流学习 ,不作为商用, 版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除.

本文链接:https://www.xibujisuan.cn/98761570.html