运用什么什么(运用什么什么把一个多项式分解因式的方法叫做运用公式)
运用什么什么把一个多项式分解因式的方法叫做运用公式
高阶多项式因式分解法:1.高阶多项式因式分解的一般方法:运用定理。2.与首末两项等距离的项的系数相等的高阶多项式因式分解法的方法。
1.高次多项式因式分解的一般方法
定理1:设f(x)=anxn+an-1xn-1+…+a1x+a0是一个整系数多项式,如果有理数v/u是它的一个根,其中u与v互素,则u|an,v|a0。特别地,当an=1时,f(x)的有理根都是整数,且为常数项a0的因数。
定理2:若既约分数v/u是整系数多项式f(x)的根,则u-v|f(1),u+v|f(-1)。
2.与首末两项等距离的项的系数相等的高次多项式的因式分解的方法
(1)最高次数是偶次的多项式
(2)最高次数是奇数的多项式
(3)各项系数和等于零的高次多项式
如何把一个多项式分解因式成几项乘积
因式分解法的四种方法:提公因式法、分组分解法、待定系数法、十字分解法等等。
1、如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
2、分组分解法指通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,分解方式一般分为“1+3”式和“2+2”式。
3、待定系数法是初中数学的一个重要方法。用待定系数法分解因式,就是先按已知条件把原式假设成若干个因式的连乘积,这些因式中的系数可先用字母表示,它们的值是待定的,由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可求出待定系数的值。
4、十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
将多项式的计算改写成只需要3次乘法
将三次方程一边变成零,另一边分解因式就可化成多项式相乘
怎样把多项式分解因式
1、 提公因法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、 分解因式x3 -2x 2-x(2003淮安市中考题)
x3 -2x2-x=x(x2-2x-1)
2/6
2、 应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a2 +4ab+4b2 (2003南通市中考题)
解:a2 +4ab+4b2 =(a+2b)2
3/6
3、 分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m2 +5n-mn-5m
解:m2 +5n-mn-5m= m 2-5m -mn+5n = (m2 -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n)
4/6
4、 十字相乘法
对于mx2 +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x2 -19x-6
分析: 1 ×7=7, 2×(-3)=-6 1×2+7×(-3)=-19
解:7x2 -19x-6=(7x+2)(x-3)
5/6
5、配方法
对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x2 +6x-40
解x2 +6x-40=x2 +6x+(9) -(9) -40=(x+3)2 -(7)2 =[(x+3)+7]*[(x+3) – 7] =(x+10)(x-4)
6/6
6、拆、添项法
可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b)
把多项式分解成一次因式的积
多项式的结果要分解因式需从以下几点考虑:1、提取公因式法(找公因式),2,公式法(看是否符合公式)3、直接分解不能,则考虑用分组分解法。
4,若是二次三项式可考虑十字相乘法(或配方法)。总之最结果要几个因式积的形式。
把多项式中的什么合并成一项
2A,A+A=2A,A可以是字母,也可以是数字,A加上A,有2个A的意思,如果A是代数,就是代表数字,如A等10,则2A是2x10=20,也就是A十A=10+10=20,所以,A不等于任何数时,A是1个字母,A十A是两个同样的字母相加,得出两个相同数字的字母A则为2个A的数据,是2个字母。
把一个多项式分成几组
分解因式技巧是:一提……提公因式:公因式分两类:
1单项式公因式;如分解因式:6a^2b一10ab^2=3ab(2a一5b);公因式为3ab;
2多项式公因式:如分解因式:(Ⅹ十2y)^2一5x一10y=(Ⅹ十2y)【(X十2y)一5】=(X十2y)(Ⅹ十2y一5):公因式为(X十2y):
二套……套公式:分两三类:第一类:a^2一b^=(a十b)(a一b):如分解因式:x^4一1=(x^2十1)(X^2一1)=(Ⅹ^2十1)(Ⅹ十1)(X一1);第二类:a^2士2ab十b^2=(a士b)^2:如:x^2一4X十4=(X一2)^2;笫三类:x^2十(m十n)X十mn=(X十m)(X十n):如:Ⅹ^2十3Ⅹ十2=(X十1)(X十2):三分组…把多项式分成两组:如x^2一Ⅹ十y一y^2=(x^2一y^2)一(Ⅹ一y)=(乂十y)(x一y)一(X一y)=(乂一y)(X一y一1):四十字相乘:如x^2十5X十4=(X十1)(X十4);
怎么把一个多项式因式分解
公式法,十字相乘法,轮换对称法,分组分解法,拆添项法,配方法。
一、提公因式法
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
各项都含有的公共的因式叫做这个多项式各项的公因式。公因式可以是单项式,也可以是多项式。
具体方法:在确定公因式前,应从系数和因式两个方面考虑。当各项系数都是整数时,公因式的系数应取各项系数的最大公约数字母取各项的相同的字母,而且各字母的指数取次数最低的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项为负,要提出负号,使括号内的第一项的系数成为正数。提出负号时,多项式的各项都要变号。
基本步骤:
(1)找出公因式;
(2)提公因式并确定另一个因式;
①找公因式可按照确定公因式的方法先确定系数再确定字母;
②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因 式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;
③提完公因式后,另一因式的项数与原多项式的项数相同。
口诀:找准公因式,一次要提尽,全家都搬走,留1把家守,提负要变号,变形看奇偶。
二、公式法
如果把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫做公式法。
三、十字相乘法
十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。
口诀:分二次项,分常数项,交叉相乘求和得一次项。(拆两头,凑中间)
(1)用十字相乘法分解二次项,得到一个十字相乘图(有两列);
(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.
(3)先以一个字母的一次系数分数常数项;
(4)再按另一个字母的一次系数进行检验;
(5)横向相加,纵向相乘。
四、轮换对称法
当题目为一个轮换对称式时,可用轮换对称法进行分解。
五、分组分解法
通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,这种分解因式的方法叫做分组分解法。能分组分解的多项式有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。
六、拆添项法
把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解,这种分解因式的方法叫做拆项补项法。要注意,必须在与原多项式相等的原则下进行变形。
七、配方法
对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种分解因式的方法叫做配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。
本网站文章仅供交流学习 ,不作为商用, 版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除.