当前位置:首页 > 生活资讯 > 正文内容

如何求伴随矩阵(如何求伴随矩阵的逆矩阵)

2023-04-28 23:30:18生活资讯1

如何求伴随矩阵的逆矩阵

矩阵的逆等于伴随矩阵除以矩阵的行列式,所以现在只要求原矩阵的行列式即可。

A^*=A^(-1)|A|,

两边同时取行列式得

|A^*|=|A|^2 (因为是三阶矩阵)

又|A^*|=4,|A|>0,所以|A|=2

所以A^(-1)=A^(*)/2,就是伴随矩阵除以2。

特殊求法:

(1)当矩阵是大于等于二阶时 :

主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以

, x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始。主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以

,一直是正数,没必要考虑主对角元素的符号问题。

(2)当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。

(3)二阶矩阵的求法口诀:主对角线元素互换,副对角线元素加负号。

如何求伴随矩阵的逆矩阵的方法

矩阵的逆等于伴随矩阵除以矩阵的行列式,所以现在只要求原矩阵的行列式即可。

A^*=A^(-1)|A|,

两边同时取行列式得

|A^*|=|A|^2 (因为是三阶矩阵)

又|A^*|=4,|A|>0,所以|A|=2

所以A^(-1)=A^(*)/2,就是伴随矩阵除以2。

特殊求法:

(1)当矩阵是大于等于二阶时 :

主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以 

 , x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始。主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以 

 ,一直是正数,没必要考虑主对角元素的符号问题。

(2)当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。

(3)二阶矩阵的求法口诀:主对角线元素互换,副对角线元素加负号。

矩阵性质

矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷。逆矩阵又是矩阵理论的很重要的内容,逆矩阵的求法自然也就成为线性代数研究的主要内容之一。

设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。其中,E为单位矩阵。

典型的矩阵求逆方法有:利用定义求逆矩阵、初等变换法、伴随阵法、恒等变形法等

如何求伴随矩阵的逆矩阵公式

假设三阶矩阵A,用A的伴随矩阵除以A的行列式,得到的结果就是A的逆矩阵。

具体求解过程如下:

对于三阶矩阵A:

a11 a12 a13

a21 a22 a23

a31 a32 a33

行列式:

|A|=a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31;

伴随矩阵:A*的各元素为

A11 A12 A13

A21 A22 A23

A31 A32 A33

A11 = (-1)^2 * (a22 * a33 - a23 * a32) = a22 * a33 - a23 * a32

A12 = (-1)^3 * (a21 * a33 - a23 * a31) = -a21 * a33 + a23 * a31

A13 = (-1)^4 * (a21 * a32 - a22 * a31) = a21 * a32 - a22 * a31

A21 = (-1)^3 * (a12 * a33 - a13 * a32) = -a12 * a33 + a13 * a32

……

A33 = (-1)^6 * (a11 * a22 - a12 * a21) = a11 * a22 - a12 * a21

所以得到A的伴随矩阵:

A11/|A| A12/|A| A13/|A|

A21/|A| A22/|A| A23/|A|

A31/|A| A32/|A| A33/|A|

伴随矩阵的方法求逆矩阵

矩阵的逆等于伴随矩阵除以矩阵的行列式,所以现在只要求原矩阵的行列式即可。

A^*=A^(-1)|A|,

两边同时取行列式得

|A^*|=|A|^2 (因为是三阶矩阵)

又|A^*|=4,|A|>0,所以|A|=2

所以A^(-1)=A^(*)/2,就是伴随矩阵除以2。

特殊求法:

(1)当矩阵是大于等于二阶时 :

主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以 

 , x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始。主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以 

 ,一直是正数,没必要考虑主对角元素的符号问题。

(2)当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。

(3)二阶矩阵的求法口诀:主对角线元素互换,副对角线元素加负号。

矩阵性质

矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷。逆矩阵又是矩阵理论的很重要的内容,逆矩阵的求法自然也就成为线性代数研究的主要内容之一。

设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。其中,E为单位矩阵。

典型的矩阵求逆方法有:利用定义求逆矩阵、初等变换法、伴随阵法、恒等变形法等。

伴随矩阵求逆矩阵公式的算法

矩阵的逆等于伴随矩阵除以矩阵的行列式。

A^*=A^(-1)|A|,两边同时取行列式得|A^*|=|A|^2 (因为是三阶矩阵)又|A^*|=4,|A|>0,所以|A|=2,所以A^(-1)=A^(*)/2,就是伴随矩阵除以2。当矩阵是大于等于二阶时 :主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以 (-1)x+y。

x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始。主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以 (-1)x+y =1 ,一直是正数,没必要考虑主对角元素的符号问题。当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。二阶矩阵的求法口诀:主对角线元素互换,副对角线元素加负号。

在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。 设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵

如何用伴随矩阵求矩阵的逆矩阵

公式:AA*=A*A=|A|E。

1、

对于二阶方阵求

伴随矩阵

有一个口诀:主对调,副取反。具体来说就是主对角线元素交换位置,副对角线上的元素取其相反数。这是按伴随矩阵的定义得到的。需要注意的一点是伴随矩阵是代数余子式的转置,转置是这个定义的重点,在计算的时候一定不要忘了。

2、为什么叫伴随矩阵呢,在我的个人理解中,已知一个矩阵A,可见我们能够获得的信息也就只有矩阵A本身携带的信息,于是我们所找到的规律矩阵C也是从矩阵A中得出的。我猜,是因为这样,所以叫作伴随矩阵。

3、伴随矩阵是矩阵理论及线性代数中的一个基本概念,是许多数学分支研究的重要工具。由克莱姆法则,到代数余子式和拉普拉斯公式,再到伴随矩阵,大致是这么个路径。很多东西是在矩阵概念出现之前就有了,但名字却是后来再取的。

怎么求伴随矩阵的逆矩阵

1.首先判断矩阵A是否可逆;2.求每个元素的代数余子式,伴随矩阵就是代数余子式的转置形式

一般情况下使用伴随矩阵法求逆矩阵计算量比较大,特殊条件或者题目要求下使用

(二)初等变换法求逆矩阵

在介绍第二种方法的时候,我先说说这种方法的思想体系和求法的思路,方便能够理解这个方法,在我们解多元一次方程组的时候经常会使用一种叫消元法,就是将方程组进行三种同解变形:

(1)对调两个方程

(2)某个方程两边同乘以一个非零常数

(3)某个方程的倍数加到另一个方程

本网站文章仅供交流学习 ,不作为商用, 版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除.

本文链接:https://www.xibujisuan.cn/98804923.html