如何理解矩(如何理解矩阵等价)
如何理解矩阵等价
我觉得等价包含行等价和列等价,就是等价是总称,具体分类是行等价列等价
何为矩阵等价
1,等价矩阵的性质:
2,矩阵A和A等价(反身性);
3,矩阵A和B等价,那么B和A也等价(等价性);
4,矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);
5,矩阵A和B等价,那么IAI=KIBI。(K为非零常数)
6,具有行等价关系的矩阵所对应的线性方程组有相同的解
87,对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征:
(1)矩阵可以通过基本行和列操作的而彼此变换。
(2)当且仅当它们具有相同的秩时,两个矩阵是等价的。
扩展资料:
A进行一系列初等变换直到B,则A与B等价,即存在一个逆矩阵PQ,使B=PAQ,则AB秩相同。
AB的相似度是存在,但逆矩阵P使B=P-1ap,所以相似度结论强于等价性。
它们有更多的性质相同的特征值,相同的行列式
等价通常意味着你可以通过初等变换将它转换成另一个矩阵,本质上就是通过与另一个矩阵具有相同的秩。这是一个非常宽泛的条件。它并不适用于很多地方。
A和B很相似,有一个不变矩阵P,使得Pap^-1=B,这是线性代数或高等代数中最重要的关系,高等代数中有一半都在处理这个关系。相似导致等价。
矩阵等价概念
矩阵等价:
在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=Q-1AP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵,A经过有限次的初等变换得到B。
性质
1.矩阵A和A等价(反身性);
2.矩阵A和B等价,那么B和A也等价(等价性);
3.矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);
4.矩阵A和B等价,那么IAI=KIBI。(K为非零常数)
5.具有行等价关系的矩阵所对应的线性方程组有相同的解
6.对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征:
(1)矩阵可以通过基本行和列操作的而彼此变换。
(2)当且仅当它们具有相同的秩时,两个矩阵是等价的。
扩展资料:
证明
a1,a2,....an,线性无关,而a1,a2,....an,b,r线性相关,所以有x1a1+x2a2+....xnan+xb+yr=0,若y=0,则x1a1+x2a2+....xnan+xb=0,说明a1,a2,...an,b线性相关,同理x=0,可得a1,a2,....an,r线性相关。
若x,y都不为零,两边除以x可得-b=x1/x)a1+(x2/x)a2+...+(xn/x)an+(y/x)r,这表示b可以用a1,a2,....an,r.表示。若除以y可证明r可以用a1,a2,....an,b表示。这就说明a1,a2,....an,b与a1,a2,....an,r等价.综合可得命题得证。
当A和B为同型矩阵,且r(A)=r(B)时,A,B一定等价。
如何理解矩阵等价条件
必要条件是:两个矩阵A和B等价,当且仅当存在两个可逆矩阵P和Q,使得A=PBQ。其中,可逆矩阵是行列式不为0的矩阵。
换句话说,如果两个矩阵A和B等价,那么它们可以通过一系列的初等变换,最终转化成同一个矩阵。而这个矩阵就是它们的标准形式,因此等价的矩阵具有相同的标准形式。
需要注意的是,这个条件是充分必要的,也就是说只有当这个条件满足时,两个矩阵才是等价的。否则,它们不等价。
矩阵等价说明了什么
矩阵的等价:经过六个初等变换的矩阵之间具有等价关系,主要是指型和秩相同。
相似的两个矩阵一定是等价的矩阵。
等价矩阵未必相似。
按定义,如果存在可逆阵P、Q,使P*A*Q=B,则称A与B等价。
矩阵相似的定义是:存在可逆阵P,使P^<-1>*A*P=B,则称A与B相似,
因为P^<-1>与P都是可逆阵,由矩阵等价的定义知,A与B是等价的。
如何理解矩阵等价的概念
一、矩阵等价、相似和合同之间的区别:
1、等价,相似和合同三者都是等价关系。
2、矩阵相似或合同必等价,反之不一定成立。
3、矩阵等价,只需满足两矩阵之间可以通过一系列可逆变换,也即若干可逆矩阵相乘得到。
4、矩阵相似,则存在可逆矩阵P使得,AP=PB。
5、矩阵合同,则存在可逆矩阵P使得,P^TAP=B。
6、当上述矩阵P是正交矩阵时,即PT=P(-1),则有A,B之间既满足相似,又满足合同关系。
二、矩阵等价、相似、合同之间联系:
1、矩阵等秩是相似、合同、等价的必要条件,相似、合同、等价是等秩的充分条件。
2、矩阵等价是相似、合同的必要条件,相似、合同是等价的充分条件。
3、 矩阵相似、合同之间没有充要关系,存在相似但不合同的矩阵,也存在合同但不相似的矩阵。
4、总结起来就是:相似=>等价,合同=>等价,等价=>等秩。
矩阵等价意味着
矩阵等价指的是两个矩阵经过一系列的基本行变换或基本列变换后,能够变成具有相同行列式的矩阵,也就是行简化阶梯形矩阵(Reduced Row Echelon Form,RREF)形式相同。这种操作也称为高斯消元法。
矩阵等价有什么性质
1,等价矩阵的性质:
2,矩阵A和A等价(反身性);
3,矩阵A和B等价,那么B和A也等价(等价性);
4,矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);
5,矩阵A和B等价,那么IAI=KIBI。(K为非零常数)
6,具有行等价关系的矩阵所对应的线性方程组有相同的解
87,对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征:
(1)矩阵可以通过基本行和列操作的而彼此变换。
(2)当且仅当它们具有相同的秩时,两个矩阵是等价的。
扩展资料:
A进行一系列初等变换直到B,则A与B等价,即存在一个逆矩阵PQ,使B=PAQ,则AB秩相同。
AB的相似度是存在,但逆矩阵P使B=P-1ap,所以相似度结论强于等价性。
它们有更多的性质相同的特征值,相同的行列式
等价通常意味着你可以通过初等变换将它转换成另一个矩阵,本质上就是通过与另一个矩阵具有相同的秩。这是一个非常宽泛的条件。它并不适用于很多地方。
A和B很相似,有一个不变矩阵P,使得Pap^-1=B,这是线性代数或高等代数中最重要的关系,高等代数中有一半都在处理这个关系。相似导致等价。
矩阵等价说明啥
一、矩阵等价、相似和合同之间的区别:
1、等价,相似和合同三者都是等价关系。
2、矩阵相似或合同必等价,反之不一定成立。
3、矩阵等价,只需满足两矩阵之间可以通过一系列可逆变换,也即若干可逆矩阵相乘得到。
4、矩阵相似,则存在可逆矩阵P使得,AP=PB。
5、矩阵合同,则存在可逆矩阵P使得,P^TAP=B。
6、当上述矩阵P是正交矩阵时,即P^T=P^(-1),则有A,B之间既满足相似,又满足合同关系。
二、矩阵等价、相似、合同之间联系:
1、矩阵等秩是相似、合同、等价的必要条件,相似、合同、等价是等秩的充分条件。
2、矩阵等价是相似、合同的必要条件,相似、合同是等价的充分条件。
3、 矩阵相似、合同之间没有充要关系,存在相似但不合同的矩阵,也存在合同但不相似的矩阵。
4、总结起来就是:相似=>等价,合同=>等价,等价=>等秩。
本网站文章仅供交流学习 ,不作为商用, 版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除.