当前位置:首页 > 自我学习 > 正文内容

如何求极限(如何求极限值lim公式)

2023-02-15 00:40:11自我学习10

如何求极限值lim公式

导函数极值存在的条件

①函数在处可导,是在处取得极值的必要不充分条件,而不是充要条件。即可导函数的极值点一定满足,但当时,不一定是极值点。求如的极值点,由得个解,但只有是极值点。一般地,可导函数在两侧的符号相反,则存在极值;如果在两侧的符号相同,则在处无极值。

②可导函数在点处取得极值的充要条件是,且在左右两侧的符号不同。 求函数极值的步骤 ①确定函数的定义域; ②求导数;

③求方程的解;

④检查方程的解的左右两侧导数的符号,确定极值点(最好利用列表法)。 如果的符号从的左侧到右侧由正变负,那么为函数的极大值; 如果的符号从的左侧到右侧由负变正,那么为函数的极小值; 如果在的左右两侧符号相同,那么不是函数的极值。

极限常用的9个公式

就只有两个重要极限 <1>.原式子lim(x/sinx)=1(x趋于0,分子分母可交换顺序,x只是一个形式自变量只要满足自变量趋于零,保留sin均成立,eg:lim[lnx/sin(lnx)]=1(x->1) 还有许多推导式 <2>: lim【(1+x)的1/x次方】=e(x趋于0) 同理括号里面是1加上趋于零的自变量,括号外1/x趋于无穷 eg:lim【(1+1/x)的x次方】=e(x趋于无穷) 许多极限都可以装换成这两种极限,最终进行求解 以上观点均属个人粗略见解

怎样求极限值

当x→0时,

sinx=x

tanx=x

arcsinx=x

arctanx=x

1-cosx=1/2x^2

a^x-1=xlna

e^x-1=x

ln(1+x)=x

推导方法

定名法则

90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。90°的偶数倍+α的三角函数与α的三角函数绝对值相同。也就是“奇余偶同,奇变偶不变”。

定号法则

将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。也就是“象限定号,符号看象限”(或为“奇变偶不变,符号看象限”)。

在Kπ/2中如果K为偶数时函数名不变,若为奇数时函数名变为相反的函数名。正负号看原函数中α所在象限的正负号。

关于正负号有个口诀;一全正,二正弦,三两切,四余弦,即第一象限全部为正,第二象限角,正弦为正,第三象限,正切和余切为正,第四象限,余弦为正。

或简写为“ASTC即“all”“sin”“tan+cot”“cos”依次为正。还可简记为:sin上cos右tan/cot对角,即sin的正值都在x轴上方,cos的正值都在y轴右方,tan/cot 的正值斜着。

比如:90°+α。定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。所以sin(90°+α)=cosα , cos(90°+α)=-sinα 。

还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,所以sin(90°+α)=cosα。

怎么求极限值视频教学

分别考虑左右极限。极限存在的充分必要条件是左右极限都存在,且相等。极限不存在的条件:当左极限与右极限其中之一不存在或者两个都不存在;左极限与右极限都存在,但是不相等。

极限存在的简单理解:如果能够最终 计算出一个值,并且 这个值 不是无穷 ,那么极限就是存在的;

极限怎么求极值

1、首先,判断函数极值点与拐点的基础知识复习,如图所示。

2、其次,利用导函数图像判断函数的极值点,如图所示。

3、接着,对例1的进一步分析,如图所示。

4、再接着,综合判断函数的极值点与拐点,如图所示。

5、例2的解答与评注,如图所示。

6、由函数在某点处的极限值判断极值点与拐点,如图所示。

7、例3的解答与评注,如图所示。

大一高等数学求极限方法总结

极限公式:

1、e^x-1~x (x→0)

2、 e^(x^2)-1~x^2 (x→0)

3、1-cosx~1/2x^2 (x→0)

4、1-cos(x^2)~1/2x^4 (x→0)

5、sinx~x (x→0)

6、tanx~x (x→0)

7、arcsinx~x (x→0)

8、arctanx~x (x→0)

9、1-cosx~1/2x^2 (x→0)

10、a^x-1~xlna (x→0)

11、e^x-1~x (x→0)

12、ln(1+x)~x (x→0)

13、(1+Bx)^a-1~aBx (x→0)

14、[(1+x)^1/n]-1~1/nx (x→0)

15、loga(1+x)~x/lna(x→0)

扩展资料:

高等数学极限中有“两个重要极限”的说法,指的是:

sinX/x →1( x→0 ),

与 (1+1/x)^x→e^x( x→∞)。

另外,关于等价无穷小,有:

sinx ~ tanx ~ arctanx ~ arcsinx ~ e^x-1 ~ ln(1+X)

~ (a^x-1)/lna ~[(1+x)^a-1]/a ~x( x→0),

1-cosx ~ x^2/2( x→0)。

本网站文章仅供交流学习 ,不作为商用, 版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除.

本文链接:https://www.xibujisuan.cn/98738140.html