如何画三角形(如何画三角形的重心)
如何画三角形的重心
重心 三角形三条中线的交点,叫做三角形的重心.掌握重心将每 条中线都分成定比2:1及中线长度公式,便于解题.
怎样画三角形的重心
分别作三个角的平分线,平分线的交点就是中点。
在三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线。任何三角形都有三条中线,而且这三条中线都在三角形的内部,并交于一点。由定义可知,三角形的中线是一条线段。由于三角形有三条边,所以一个三角形有三条中线。且三条中线交于一点。这点称为三角形的重心。每条三角形的中线分得的两个三角形面积相等。
三角形重心作法
1.三角形的重心是三角形三条中线的交点.
2.三角形的重心到顶点的距离等于到对边中点距离的2北.
3.在直角坐标系内,若三顶点的坐标分别为(x1,y1),(x2,y2),(x3,y3),则三角形的重心G的坐标为((x1+x2+x3)/3,(y1+y2+y3)/3).
4.三角形的重心是到三角形三顶点距离的平方和最小的点。
5.三角形的重心是三角形内到三边距离之积最大的点。
如何画三角形的重心?
重心坐标公式的推导公式:
设三点为A(x1.y1),B(x2,y2),C(x3,y3)
重心坐标(xm,ym)
考虑xm,任取两点(不妨设为A和B),则重心在以AB为底的中线上.
AB中点横坐标为(x1+x2)/2
重心在中线距AB中点1/3处
故重心横坐标为xm=1/3*(x3-(x1+x2)/2)+(x1+x2)/2=(x1+x2+x3)/3
同理,ym=(y1+y2+y3)/3
重心坐标的公式:
平面直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3
空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z2)/3
扩展资料:
1、重心与内心坐标的关系:
若三角形ABC所在平面中一个点的重心坐标P(x,y,z),定义其内心坐标为
,其中a、b、c为A、B、C对边边长。内心坐标是用P到三角形ABC三边距离之比来刻画P点的位置。三点共线的充要条件是内心坐标组成的三阶行列式的值等于0。
2、直线上的重心坐标
我们首先在一条直线上定义点的重心坐标.设
和
是直线z上的两个不同点
和
的向径。
那么,
上的任意一点P的向径
可表示成
。
而且这种表示法是唯一的.当点P在线段
上时,还需要下列条件
这时,我们称
为点P的重心坐标。
三角形重心画法用圆规画
尺规作图就是用圆规和不带有刻度的直尺作图。三角形的重心是三角形三条中线的交点,所以,只要找出三角形三条边的中点就行了。
在三角形ABC中,分别以A,B为圆心,以任意长为半径,上下作弧,交于E,F两点,连接EF交AB于O点,则O点为AB的中点,连OC,OC就是AB边的中线,同理可得CA,BC边的中线,三条中线的交点就是三角形的重心。
如何画三角形的重心坐标图
1.三角形的重心是三角形三条中线的交点.
2.三角形的重心到顶点的距离等于到对边中点距离的2北.
3.在直角坐标系内,若三顶点的坐标分别为(x1,y1),(x2,y2),(x3,y3),则三角形的重心G的坐标为((x1+x2+x3)/3,(y1+y2+y3)/3).
4.三角形的重心是到三角形三顶点距离的平方和最小的点。
5.三角形的重心是三角形内到三边距离之积最大的点。
6.如果你是高中学生,在向量这一部分里面关于重心的性质还有很多.
三角形重心画图步骤
在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z3)/3 重心是三角形三边中线的交点,重心的几条性质:1、重心到顶点的距离与重心到对边中点的距离之比为2:1.2、重心和三角形3个顶点组成的3个三角形面积相等.3、重心到三角形3个顶点距离的平方和最小.4、三角形内到三边距离之积最大的点.
本网站文章仅供交流学习 ,不作为商用, 版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除.