当前位置:首页 > 自我学习 > 正文内容

如何数据挖掘(怎样进行数据挖掘)

2023-05-10 06:40:19自我学习1

怎样进行数据挖掘

CRISP-DM模型的基本流程包括:

商业理解:

这一步骤旨在从商业角度理解项目的目标和需求,把理解转化为数据挖掘问题的定义和制定以实现目标为目的的初步计划。具体步骤包括:

1、确定业务目标:

分析项目背景,以业务视角分析项目的目标和需求,确定业务角度的成功标准;

2、项目可行性分析:

分析拥有的资源、条件和限制,进行风险、成本和效益的评估;

3、确定数据挖掘目标:

明确数据挖掘的目标和成功标准,数据挖掘目标和业务目标是不一样的,前者指的是在技术上,例如生成一颗决策树。

4、提出项目计划:

对整个项目做一个计划,初步确认用到的技术和工具。

数据理解

数据理解阶段开始于原始数据收集,然后是熟悉数据,表明数据质量问题,探索并初步理解数据,发觉有趣的子集以形成对隐藏信息的假设。具体步骤包括:

1、收集原始数据:

收集项目涉及的数据,如有必要,将数据导入数据处理工具中并做一些初步的数据集成工作,生成相应的报告;

2、数据描述:

对数据进行一些大致描述,例如记录数、属性数等并给出相应的报告;

3、探索数据:

对数据做一些建单的数据统计分析,例如关键属性的分布等;

4、检查数据质量:

包括数据是否完整,是否有错,受有缺失值等。

数据准备

建立模型

模型评估

模型实施

数据挖掘的几种方法

SPSS,全称是Statistical Product and Service Solutions,即“统计产品与服

第1页/

务解决方案”软件,是IBM公司推出的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关服务的总称,也是世界上公认的三大数据分析软件之一。SPSS具有统计分析功能强大、操作界面友好、与其他软件交互性好等特点,被广泛应用于经济管理、医疗卫生、自然科学等各个领域。具体到管理方面,SPSS也是一个进行数据分析和预测的强大工具。这门课中也会用到AMOS软件。一

数据挖掘三种方法

数据挖掘的方法:

1.分类 (Classification)

2.估计(Estimation)

3.预测(Prediction)

4.相关性分组或关联规则(Affinity grouping or association rules)

6.复杂数据类型挖掘(Text,Web ,图形图像,视频,音频等)数据挖掘数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性(属于Association rule learning)的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

怎样进行数据挖掘技术

①基于大量数据

并不是说在小数据上不可进行数据挖掘,实际上大多数的算法均可在小数据上运行并得到结果。只不过,小数据量完全可以通过人工分析来总结规律,再者,小数据量在大多数情况下是无法反映出普遍性的。

②非平凡性

所谓非平凡,指的是挖掘出来的知识绝非那么简单的,绝不能是类似某著名体育评论员所说的“经过我的计算,我发现了一个有趣的现象,到本场比赛结束为止,这届世界杯的进球数和失球数是一样的。非常的巧合!”那种知识。

③隐含性

数据挖掘的意义就是要深层次挖掘隐藏在数据内部的知识,而不仅仅是浮现在数据表面的信息。其中常用的BI工具,如报表和OLAP是完全可以让用户找出相关信息的。

④新奇性

经过数据挖掘出来的知识应该是以前未知的,因为只有全新的知识,才可以帮助企业获得进一步的洞察力。

⑤价值性

数据挖掘出来的结果必须是能给企业带来直接的或间接的效益。虽然有时候,在一些数据挖掘项目中,或因缺乏明确的业务目标,或因数据质量的不足,或因挖掘人员的经验不足等因素,均会导致挖掘效果不佳或者说完全没有效果。但那仅仅只是一部分,依旧有大量的成功案例在不断证明着数据挖掘是的确可以变成提升效益的利器的。

好了,有关数据挖掘技术具有哪些特点的内容分享到此就结束了,想要了解更多数据分析,数据挖掘等相关内容,可查阅本站其他内容,希望对大家能有所帮助

怎样进行数据挖掘和分析

我做数据挖掘相关的工作很多了。简单来谈一下个人对这个问题的看法。有说的不对的地方,欢迎各位同行批评指正:

数据挖掘大概可以分成四类问题,问题不一样,对应的处理方法也不同

1.预测问题:建模数据集合中有X和Y,Y是连续变量。通常用线性模型、随机森林、xgboost算法来解决。评估主要基于测试集上的均方误差或者相对误差。或者计算cross-validation的平均均方误差或者相对误差

2.分类为题:建模数据集合中有X和Y,Y是类别变量。通常用logistic回归、cart、随机森林、xgboost来解决。评估主要基于测试集合上的准确率和召回率或者计算cross-validation的平均准确率或召回率

3.聚类问题:建模数据集合只有X,没有Y。需要把X里面的样本分成多个群组。一般采用K-MEANS算法。不过业界没有统一的评估标准

4.异常检测问题:建模数据集合只有X,没有Y。需要把X数据里面的异常点找出来。这个相对而言比较麻烦。一般用Isolation Forest。业界似乎也没有统一的评价标注。

如何进行数据挖掘

那是通过大数据收集平台,将所有的原数据进行汇总,并利用各个点位进行获得

怎么进行数据挖掘

pycharm也就是python代码,数据挖掘就是通过统计学的原理找到数据之间隐藏的关系。所以,首先要懂得统计学的机器学习和深度学习原理,然后把原理通过python代码的方式写出来,把我们的数据代入代码的入口,最后进行验证,得出结论这就是数据挖掘。

怎样进行数据挖掘工作

分析数据有两种,

1列表法

将实验数据按一定规律用列表方式表达出来是记录和处理实验数据最常用的方法。表格的设计要求对应关系清楚、简单明了、有利于发现相关量之间的物理关系;此外还要求在标题栏中注明物理量名称、符号、数量级和单位等;根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。最后还要求写明表格名称、主要测量仪器的型号、量程和准确度等级、有关环境条件参数如温度、湿度等。

2作图法

作图法可以最醒目地表达物理量间的变化关系。从图线上还可以简便求出实验需要的某些结果(如直线的斜率和截距值等),读出没有进行观测的对应点(内插法),或在一定条件下从图线的延伸部分读到测量范围以外的对应点(外推法)。此外,还可以把某些复杂的函数关系,通过一定的变换用直线图表示出来。例如半导体热敏电阻的电阻与温度关系为,取对数后得到,若用半对数坐标纸,以lgR为纵轴,以1/T为横轴画图,则为一条直线。

这个要看你分析什么数据。

分析大数据,R语言和Linux系统比较有帮助,运用到的方法原理可以翻翻大学的统计学,不需要完全理解,重在应用。

分析简单数据,Excel就可以了。Excel本意就是智能,功能很强,容易上手。我没有见过有人说自己精通Excel的,最多是熟悉Excel。Excel的函数可以帮助你处理大部分数据。

一、掌握基础、更新知识。

基本技术怎么强调都不过分。这里的术更多是(计算机、统计知识),多年做数据分析、数据挖掘的经历来看、以及业界朋友的交流来看,这点大家深有感触的。

数据库查询—sql

数据分析师在计算机的层面的技能要求较低,主要是会sql,因为这里解决一个数据提取的问题。有机会可以去逛逛一些专业的数据论坛,学习一些sql技巧、新的函数,对你工作效率的提高是很有帮助的。

统计知识与数据挖掘

你要掌握基础的、成熟的数据建模方法、数据挖掘方法。例如:多元统计:回归分析、因子分析、离散等,数据挖掘中的:决策树、聚类、关联规则、神经网络等。但是还是应该关注一些博客、论坛中大家对于最新方法的介绍,或者是对老方法的新运用,不断更新自己知识,才能跟上时代,也许你工作中根本不会用到,但是未来呢?

行业知识

如果数据不结合具体的行业、业务知识,数据就是一堆数字,不代表任何东西。是冷冰冰,是不会产生任何价值的,数据驱动营销、提高科学决策一切都是空的。

一名数据分析师,一定要对所在行业知识、业务知识有深入的了解。例如:看到某个数据,你首先必须要知道,这个数据的统计口径是什么?是如何取出来的?这个数据在这个行业,在相应的业务是在哪个环节是产生的?数值的代表业务发生了什么(背景是什么)?对于a部门来说,本月新会员有10万,10万好还是不好呢?先问问上面的这个问题:

对于a部门,

1、新会员的统计口径是什么。第一次在使用a部门的产品的会员?还是在站在公司角度上说,第一次在公司发展业务接触的会员?

2、是如何统计出来的。a:时间;是通过创建时间,还是业务完成时间。b:业务场景。是只要与业务发接触,例如下了单,还是要业务完成后,到成功支付。

3、这个数据是在哪个环节统计出来。在注册环节,在下单环节,在成功支付环节。

4、这个数据代表着什么。10万高吗?与历史相同比较?是否做了营销活动?这个行业处理行业生命同期哪个阶段?

在前面二点,更多要求你能按业务逻辑,来进行数据的提取(更多是写sql代码从数据库取出数据)。后面二点,更重要是对业务了解,更行业知识了解,你才能进行相应的数据解读,才能让数据产生真正的价值,不是吗?

对于新进入数据行业或者刚进入数据行业的朋友来说:

行业知识都重要,也许你看到很多的数据行业的同仁,在微博或者写文章说,数据分析思想、行业知识、业务知识很重要。我非常同意。因为作为数据分析师,在发表任何观点的时候,都不要忘记你居于的背景是什么?

但大家一定不要忘记了一些基本的技术,不要把基础去忘记了,如果一名数据分析师不会写sql,那麻烦就大了。哈哈。。你只有把数据先取对了,才能正确的分析,否则一切都是错误了,甚至会导致致命的结论。新同学,还是好好花时间把基础技能学好。因为基础技能你可以在短期内快速提高,但是在行业、业务知识的是一点一滴的积累起来的,有时候是急不来的,这更需要花时间慢慢去沉淀下来。

不要过于追求很高级、高深的统计方法,我提倡有空还是要多去学习基本的统计学知识,从而提高工作效率,达到事半功倍。以我经验来说,我负责任告诉新进的同学,永远不要忘记基本知识、基本技能的学习。

二、要有三心。

1、细心。

2、耐心。

3、静心。

数据分析师其实是一个细活,特别是在前文提到的例子中的前面二点。而且在数据分析过程中,是一个不断循环迭代的过程,所以一定在耐心,不怕麻烦,能静下心来不断去修改自己的分析思路。

三、形成自己结构化的思维。

数据分析师一定要严谨。而严谨一定要很强的结构化思维,如何提高结构化思维,也许只需要工作队中不断的实践。但是我推荐你用mindmanagement,首先把你的整个思路整理出来,然后根据分析不断深入、得到的信息不断增加的情况下去完善你的结构,慢慢你会形成一套自己的思想。当然有空的时候去看看《麦肯锡思维》、结构化逻辑思维训练的书也不错。在我以为多看看你身边更资深同事的报告,多问问他们是怎么去考虑这个问题的,别人的思想是怎么样的?他是怎么构建整个分析体系的。

四、业务、行业、商业知识。

当你掌握好前面的基本知识和一些技巧性东西的时候,你应该在业务、行业、商业知识的学习与积累上了。

这个放在最后,不是不重要,而且非常重要,如果前面三点是决定你能否进入这个行业,那么这则是你进入这个行业后,能否成功的最根本的因素。数据与具体行业知识的关系,比作池塘中鱼与水的关系一点都不过分,数据(鱼)离开了行业、业务背景(水)是死的,是不可能是“活”。而没有“鱼”的水,更像是“死”水,你去根本不知道看什么(方向在哪)。

如何提高业务知识,特别是没有相关背景的同学。很简单,我总结了几点:

1、多向业务部门的同事请教,多沟通。多向他们请教,数据分析师与业务部门没有利益冲突,而更向是共生体,所以如果你态度好,相信业务部门的同事也很愿意把他们知道的告诉你。

2、永远不要忘记了google大神,定制一些行业的关键字,每天都先看看定制的邮件。

3、每天有空去浏览行业相关的网站。看看行业都发生了什么,主要竞争对手或者相关行业都发展什么大事,把这些大事与你公司的业务,数据结合起来。

4、有机会走向一线,多向一线的客户沟通,这才是最根本的。

标题写着告诫,其实谈不上,更多我自己的一些心得的总结。希望对新进的朋友有帮助,数据分析行业绝对是一个朝阳行业,特别是互联网的不断发展,一个不谈数据的公司根本不叫互联网公司,数据分析师已经成为一个互联网公司必备的职位了。

数据挖掘的四种方法

八种常见的数据分析方法

1数字和趋势

采用数字和趋势图进行数据信息的展示最为直观,从具体的数字和趋势走向中可以更好地得到数据信息,有助于提高决策的准确性和实时性。

2维度分解

当单一的数字或趋势过于宏观时,我们可以通过不同维度对数据进行分解,以获取更加精细的数据洞察。在进行维度选择时,需要考虑此维度对于分析结果的影响。

3用户分群

用户分群即指针对符合某种特定行为或具有共同背景信息的用户,进行归类处理。也可通过提炼某一类用户的特定信息,为该群体创建用户画像。用户分群的意义在于我们可以针对具有特定行为或特定背景的用户,进行针对性的用户运营和产品优化,比如对具有“放弃支付或支付失败”的用户进行对应优惠券的发放,以此来实现精准营销,大幅提高用户的支付意愿和成交量。

4转化漏斗绝大部分商业变现的流程,都可归纳为漏斗。漏斗分析是常见的一种数据分析手段,比如常见的用户注册转化漏斗,电商下单漏斗。整个漏斗分析的过程就是用户从前到后转化的路径,通过漏斗分析可以得到转化效率。这其中包含三个要点:其一,整体的转化效率。其二,每一步(转化节点)的转化效率。其三,在哪一步流失最多,原因是什么,这些流失的用户具有什么特征。

5行为轨迹 

数据指标本身只是真实情况的一种抽象,通过关注用户的行为轨迹,才能更真实地了解用户的行为。例如只看到常见的uv和pv指标,是无法理解用户是如何使用你的产品的。通过大数据手段来还原用户的行为轨迹,可以更好地关注用户的实际体验,从而发现具体问题。如果维度分解依旧难以确定某个问题所在,可通过分析用户行为轨迹,发现一些产品及运营中的问题。

6留存分析人口红利逐渐消退,拉新变得并不容易,此时留住一个老用户的成本往往要远低于获取一个新用户的成本,因此用户留存成为了每个公司都需要关注的问题。可以通过分析数据来了解留存的情况,也可以通过分析用户行为找到提升留存的方法。常见的留存分析场景还包括不同渠道的用户的留存、新老用户的留存以及一些新的运营活动及产品功能的上线对于用户回访的影响等。

7A/B测试 A/B测试通常用于测试产品新功能的上线、运营活动的上线、广告效果及算法等。

进行A/B测试需要两个必备因素:第一,足够的测试时间;第二,较高的数据量和数据密度。当产品的流量不够大时,进行A/B测试很难得到统计结果。

8数学建模涉及到用户画像、用户行为的研究时,通常会选择使用数学建模、数据挖掘等方法。比如通过用户的行为数据、相关信息、用户画像等来建立所需模型解决对应问题。

数据挖掘的步骤

1、巨潮咨询网

巨潮资讯网是中国证监会指定的上市公司信息披露网站,平台提供上市公司公告、公司资讯、公司互动、股东大会网络投票等内容功能,一站式服务资本市场投资者。

2、亿牛网

亿牛网为价值投资者提供股票相关历史指标(市盈率、市净率、股价、市值、股息率、ROE、净利润、营收等)的查询和分析。

3、小乐财报

小乐财报提供上市公司财务报表及公开数据挖掘分析服务.历史市盈率,有超过10年的历史数据、为价值投资者提供简约可靠的金融数据可视化图表。

4、乐晴智库

提供行业深度研究,覆盖大消费,节能环保,传媒娱乐,信息科技,地产金融,生命健康,先进制造等领域。

5、投资数据网

投资数据网提供A股、B股、港股、美股以及行业、指数、基金、市场、宏观等历史估值数据、财报数据、博弈数据、估值工具、财报可视化、基本面选股等

6、萝卜投研

萝卜投研是利用人工智能、大数据、移动应用技术,建立的股票基本面分析智能投研平台,利用萝卜投研高效处理投资资讯,公告,研报,财报,数据等信息。

7、理杏仁

理杏仁定位于理性投资者的数据中心,为投资者提供专业的数据提取、筛选以及可视化服务。

8、看财报

看财报为价值投资者提供上市公司财务数据,各项基本面分析指标,同时提供DCF折现工具、杜邦分析表、历史PE(市盈率)和PB(市净率)数据等。

9、宽谷

宽谷是股票价值分析工具,通过分析财务报表和市场信息,评估公司股票的投资价值。

10、股票估值网

股票估值网是一家独立的专业股票研究机构,专注A股市场上500家重要公司基本面的研究分析,密切关注这500家公司成长性和估值的变化,在此基础上将它们按成长性分为5级:优秀,良好,一般,较差,很差;按估值分为4类:低估值,合理估值,较高估值,高估值。

本网站文章仅供交流学习 ,不作为商用, 版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除.

本文链接:https://www.xibujisuan.cn/98829616.html